l2-data.ru

Закрыть ... [X]

Зачем нужно использование полимерно битумное вяжущее? Можно ли без него обойтись в дорожном строительстве? Какие нюансы при его использовании нужно учитывать?

Основной вид нефтяного вяжущего, успешно применяемого в дорожной отрасли любого государства мира при строительстве и ремонте дорожных покрытий, – это нефтяной дорожный битум, пластичный, способный без разрушения выдерживать воздействие низких температур и температурных перепадов, а также различных деформаций.

Однако специфические условия эксплуатации таких объектов дорожного строительства как мосты, путепроводы, развязки и пр. обусловливают необходимость предъявления более высоких требований к покрытиям.

Удовлетворить эти требования в полной мере битум уже не может. Кроме того, с каждым годом возрастают нагрузки, увеличивается интенсивность движения, негативно влияет на дорожное покрытие шипованная резина. Во всем мире постоянно проводятся работы по созданию новых современных дорожных материалов и технологий, корректировке нормативных требований к их физико-механическим свойствам. Все это направлено на повышение долговечности дорожных покрытий в современных условиях их эксплуатации.

Полимерные добавки

Одним из направлений такой деятельности является модификация битума различными полимерными добавками. Поиск наиболее эффективных модификаторов, отработка оптимальных рецептур модифицированного битума, полимерно-битумных эмульсий, а также анализ целесообразности их использования по тому или иному назначению, начатый в 50-е гг. прошлого столетия, продолжаются по сей день. Главным ориентиром для принятия технических решений являются результаты постоянно обобщаемого практического опыта.

Модификаторы

Установлено, что экономически эффективными модификаторами свойств нефтяных битумов являются те, которые доступны и недороги. С технической точки зрения, для создания на основе битумов композиционных материалов с заданным комплексом свойств могут применяться только те модификаторы,
которые:

не разрушаются при температуре приготовления асфальтобетонной смеси; совместимы с битумом при проведении процесса смешения на обычном оборудовании при температурах, традиционных для приготовления асфальтобетонных смесей; в летнее время повышают сопротивление битумов в составе дорожного покрытия к воздействию сдвиговых напряжений без увеличения их вязкости при температурах смешения и укладки, а также не придают битуму жесткость или ломкость при низких температурах в покрытии;
химически и физически стабильны, сохраняют присущие им свойства при хранении, переработке, а также в реальных условиях работы в составе дорожного покрытия.

К настоящему времени за рубежом накоплен значительный опыт по применению при строительстве и ремонте дорожных покрытий композиционных материалов на основе битума и модификаторов, таких как сера, каучук (полибутадиеновый, натуральный, бутилкаучук, хлоропрен и др.), органо-марганцевые компаунды, термопластичные полимеры (полиэтилен, полипропилен, полистирол, этилен-винилацетат (EVA), термопластичные каучуки (полиуретан, олефиновые сополимеры), а также блоксополимеры стирол-бутадиен-стирола (СБС).

Полимеры СБС

Наибольшее применение находят полимеры типа СБС, что обусловлено их способностью не только повышать прочность битума (что достигается и другими видами модификаторов), но и придавать полимерно-битумной композиции эластичность – свойство присущее полимерам, причем при небольшой концентрации (3-5% от массы битума). Использование в рецептуре асфальтобетонной смеси битума, модифицированного полимером типа СБС, обеспечивает дорожному покрытию способность к быстрому снятию напряжений, которые возникают в покрытии под воздействием движущегося транспорта.

Характер и эффективность модифицирующего действия полимера на битум зависит от структуры образующейся полимербитумной композиции.

Температуры

Анализ известных способов приготовления битумов, модифицированных полимерами, показывает, что все они предусматривают, как правило, повышенную температуру процесса (150-200 оС) и интенсивное перемешивание компонентов. Температура разложения большинства используемых для модификации битумов полимеров (полиэтилена, полипропилена, этилен-пропиленовых каучуков, термоэластопластов и др.) значительно превышает температуру совмещения их с битумом. Следовательно, реакции термо- и механодеструкции полимеров в массе битума не происходят, а если и имеют место, то протекают в очень незначительной степени.

Битумы при нагревании размягчаются, а термопластичные полимеры, независимо от того, были они кристаллическими или аморфными, переходят в вязко-текучее состояние. Таким образом, процесс смешения при высокой температуре битума с полимерами любой химической природы протекает в две стадии: эмульгирование размягченного полимера в жидком битуме и последующее частичное (набухание) или полное растворение. Глубина процесса диспергирования полимера в битуме при прочих равныхусловиях определяется химической природой и молекулярной массой полимера, химическим составом битума, а также соотношением компонентов в смеси.

Степень дисперсности

Известно, что степень дисперсности таких систем при прочих равных условиях определяется соотношением вязкости компонентов, а также их взаимной растворимостью. В случае применения нерастворимых или частично растворимых в битуме полимеров предельный размер частиц в смеси зависит только от соотношения вязкостей и условий перемешивания, а смесь при повышенной температуре представляет собой эмульсию (рис. 1). Низкая вязкость полимера способствует лучшему диспергированию его в битуме. При повышении концентрации такого полимера размер капель в массе битумавозрастает, увеличивается вероятность их коалесценсии (слияния), приводящей к обращению фаз в системе. Примером такого вида модификатора является этилен-пропиленовый каучук СКЭПТ-Э-30,

образующий непрерывную фазу в битуме при введении в количестве не менее 9%масс (рис. 2).

полимерно битумное вяжущее

Для взаимно растворимых компонентов степень дисперсности системы дополнительно возрастает за счет взаимодействия компонентов на границе раздела фаз. К таким полимерам относятся блоксополимеры типа СБС. Наличие в структуре стирол-бутадиен-стирольного полимера ароматических блоков обусловливает его сродство с нефтяным битумом, содержащим значительное количество ароматических соединений.

В результате структура битумов, модифицированных полимером типа СБС, принципиально отличается от структуры битумных композиций с алифатическими полимерами. При температуре смешения (175-185 оС), вследствие растворения полимера в мальтеновой части битума, образуется гомогенная композиция, как показывают оптические исследования, однородная при увеличении в 600 раз (рис. 3).

Концентрационный предел взаимной растворимости

Компонентов (битума и полимера) снижается с увеличением молекулярной массы полимера. Так, при технологической температуре битум образует оптически однородные композиции с высокомолекулярным дивинил-стирольным термоэластопластом (М=150 000) при содержании последнего до 5%масс, в то время как с низкомолекулярным ДСТ-30 (М=45 000) – до 9%масс. При дальнейшем повышении концентрации ДСТ-30 в битуме происходит выделение в отдельную фазу асфальтосмолистой части битума, не являющейся растворителем для полимера (рис. 4).

Вяжущее

Структура битумов

Модифицированных рассмотренными выше видами полимеров, созданная при технологической температуре, как правило, сохраняется и после охлаждения. Это обусловлено резким увеличением вязкости приготовленного полимерно-битумного материала при понижении температуры, препятствующим расслоению дисперсной системы. При комнатной температуре и в реальных условиях эксплуатации битумы, модифицированные полимерами, представляют собой, как правило, микро- или макронеоднородные системы, то есть являются композиционными материалами.

Свойства

Их определяются фазовой структурой смеси, в частности, механические – преимущественно свойствами непрерывной фазы. Именно поэтому способностью придавать битуму эластичность (свойство, присущее и олефиновым полимерам, например, полиэтилену, полипропилену, этилен-пропиленовому каучуку и др.) обладают лишь те полимеры, которые образуют непрерывную фазу в массе композиции, в частности, полимеры типа СБС (табл. 1-3). Роль полимера, образующего дисперсную фазу в массе битума, сводится лишь к упрочнению материала. Варьируя видом, концентрацией полимера, можно получать композиционные материалы с заданным комплексом физико-механических свойств.

Линейный полимер типа СБС является по отношению к битуму структурирующей добавкой, о чем свидетельствует понижение значений показателей «глубина проникания иглы при 25 оС», «растяжимость», повышение значений показателя «температура размягчения» (табл. 1).

Таблица

Фактические значения показателей физико-механических свойств полимерно-битумных композиций, приготавливаемых с использованием полимера типа СБС, зависят от свойств самого исходного битума. Принципиальной отличительной особенностью композиции битума даже с небольшим количеством полимера СБС (2,5%масс) является способность к обратной деформации, о чем свидетельствует высокий уровень значений показателя «эластичность при 25 и 0 оС» – более 70%.

Введение полимеров СБС в битум

Приводит к значительному возрастанию вязкости битума. Как видно из табл. 1, значения показателей «кинематическая вязкость при 135 °С» и «динамическая вязкость при 60 °С» битума в присутствии 2,5%масс Кraton D Т 1101 CS возрастают в 2,4 и 3,65 раза соответственно.

При том же содержании полимера Luprene LG 501 вязкость битума увеличивается в 2,54 и 3,44 раза соответственно, что свидетельствует об одинаковом уровне структурированности полимерно-битумных вяжущих, приготовленных с использованием исследуемых марок полимеров СБС. Полимер типа СБС в значительной степени повышает деформативную способность битума при 0 оС, так, значение показателя «растяжимость при 0 оС» полимерно-битумных композиций на 10 единиц превышает значение этого показателя для исходного битума.

Таблица

Физико-механические свойства полимерно-битумных вяжущих, подвергнутых испытанию на старение по методике ASTM D 1754, характеризуют фактическое качество вяжущего, находящегося непосредственно в составе полимер-асфальтобетонной смеси и дорожном покрытии.

Как видно из табл. 1, результатом термического воздействия является еще большее упрочнение структуры полимерно-битумного вяжущего: так, значение показателя «динамическая вязкость при 60 оС» композиции, приготовленной с использованием полимера Кraton D Т 1101 CS, возрастает в 1,56 раза, а с тем же количеством полимера Luprene LG 501 – в 1,73 раза.

Таблица

Увеличение содержания полимеров в битуме с 2,5%масс до 4,0%масс приводит к повышению значений показателей вязкости, как кинематической – при 135 оС, так и динамической – при 60 оС (табл. 2),к снижению значений показателя «растяжимость при 25 оС».

Коэффициенты возрастания кинематической и динамической вязкости для полимерно-битумных вяжущих, приготовленных на Кraton D Т 1101 CS и Luprene LG 501, близки по значениям. Как видно из табл. 2, введение в битум полимера СБС в количестве 4,0%масс приводит к получению полимерно-битумных вяжущих, по значению показателей физико-механических свойств отвечающих требованиям ГОСТ Р 52056-2003, предъявляемым к ПБВ 40.

Введение в битум полимеров Кraton D Т 1101 CS и Luprene LG 501 в количестве 6,0%масс приводит к образованию высоковязкой гелеобразной при 170 оС массы. Вследствие высокой степени структурированности приготовленных полимерно-битумных вяжущих выполнить полный комплекс испытаний ПБВ не удается (табл. 3).

Повышение содержания в битуме полимеров

Независимо от их марки, с 4%масс до 6%масс приводит к резкому увеличению значений показателя «температура размягчения», при этом существенного снижения значений показателя «глубина проникания иглы» уже не наблюдается. По сравнению с кинематической вязкостью при 135 оС полимерно-битумных вяжущих,содержащих 4%масс полимера СБС разных марок, значение этого показателя для композиций с 6%масс Кraton D Т 1101 CS увеличивается в 2,64 раза, полимера Luprene LG 501 – в 2,42 раза.

Таким образом, варьируя количество полимера типа СБС, можно получить полимерно-битумное вяжущее с требуемыми характеристиками. Битумы, модифицированные u1087 полимерами типа СБС, являются дисперсными (неоднородными) системами, а следовательно, термодинамически неустойчивыми, что является причиной их расслоения (разрушения), особенно при повышенной температуре в статических условиях (в отсутствие перемешивания).

Чем выше сродство полимера к битуму и чем выше степень дисперсности полимера в массе битума, тем выше устойчивость композиционного материала к расслаиванию. Как видно из табл. 4, полимерно-битумные композиции, приготовленные в лабораторных условиях, подвержены существенному расслоению. При использовании высокоэффективных смесителей, позволяющих достичь более высокой степени дисперсности полимера в битуме, устойчивость композиционных материалов к расслаиванию возрастает. Вот почему за рубежом приготовление полимерно-битумных материалов осуществляется с помощью коллоидных мельниц.

Таблица

Качество

Для обеспечения заданного качества товарной продукции, достижения максимальной эффективности от ее использования в дорожном строительстве необходимо осуществлять контроль не только за однородностью свежеприготовленной композиции, но и за устойчивостью к расслаиванию при повышенной температуре. Учитывая тот факт, что полностью предотвратить расслоение композиции битума с полимером типа СБС на стадии хранения при повышенной температуре невозможно, необходимо лимитировать длительность хранения товарной продукции на складе при повышенной температуре и периодическом механическом перемешивании массы.

В связи с тем, что механизм распределения в битуме полимера заключается в растворении последнего в мальтеновой части битума, на первый взгляд кажется, что для достижения наилучшей совместимости компонентов необходимо увеличить количество масляных компонентов в битуме, например, за счет дополнительного введения минеральных масел. Однако следует напомнить, что нефтяные дорожные битумы как коллоидные системы также термодинамически неустойчивы во времени.

Введение масел

Приводит к нарушению относительной стабильности структуры битума, сформировавшейся на стадии изготовления последнего. В зависимости от химической природы соединений, входящих в состав минерального масла, последнее может являться хорошим или плохим растворителем по отношению к битуму.

Таблица

В России предлагается применять индустриальное масло, что в принципе неверно по ряду следующих причин:

индустриальное масло является товарным продуктом нефтепереработки, включающим в свой состав различные присадки, обеспечивающие эксплуатационную надежность масла при использовании его по прямому назначению. Целесообразность присутствия этих присадок в ПБВ для улучшения эксплуатационных характеристик не доказана, в то время как приводит к повышению стоимости ПБВ; индустриальное масло состоит из низкополярных соединений, что обусловлено технологией его получения, вследствие чего растворяющая способность этого вида масла по отношению
к полярным соединениям (к которым относятся и нефтяные битумы) минимальна. Введение индустриального масла приводит к разрушению внутренних связей в структуре битума и выпотеванию масляных компонентов из асфальтобетона; товарные дорожные битумы, производимые на нефтеперерабатывающих заводах России, характеризуются низкой (по сравнению с зарубежными аналогами) вязкостью, что является причиной сдвиговых деформаций дорожных асфальтобетонов. Пластификация битумов, имеющая место при введении индустриального масла, приводит к еще большему снижению когезионной прочности битума.

Кроме того, использование индустриального масла на стадии приготовления битумов, модифицированных полимерами, не только не повышает устойчивость последних к расслаиванию, но и способствует ускорению процесса разрушения дорожного покрытия вследствие выпотевания (отторжения) масел, в первую очередь введенных дополнительно.

Для получения полимерно-битумных материалов, характеризующихся более высокой пластичностью, достаточно использовать в качестве исходного сырья битумы с более высокими значениями показателя глубины проникания иглы при 25 оС (что имеет место в зарубежной практике) или применять нефтяные пластификаторы ароматического характера. Часто можно слышать мнение о том, что полимеры типа СБС способствуют повышению прочности сцепления дорожного битума с минеральными материалами, в том числе и кислыми, однако это не так.

Как и дорожные битумы, полимерно-битумные вяжущие способны образовывать прочные связи с эталонным материалом – мрамором (табл. 1-3). Однако формальное соответствие полимерно-битумных композиций по значению этого показателя требованиям ГОСТ Р 52056-2003 не может быть гарантией высокой адгезионной прочности полимерасфальтобетонного покрытия, устроенного с использованием ПБВ в смеси с кислыми минеральными материалами (гранитом), так как битумоминеральные смеси,приготовленные с использованием гранитного щебня и ПБВ, легко разрушаются водой (табл. 5).

По этой причине во избежание эрозийного разрушения полимерасфальтобетонного покрытия, устраиваемого с использованием кислых минеральных материалов, в рецептуру полимерно-битумного вяжущего необходимо вводить адгезионные добавки. Анализ зарубежного и отечественного опыта применения битумов, модифицированных полимерами, показывает принципиальные отличия в подходах к выбору исходных компонентов, к проектированию составов полимерно-битумных вяжущих, к регламентированию комплекса физико-механических свойств ПБВ, к выбору объектов, на которых наиболее целесообразна замена битума дорожного на новый вид вяжущего.

Недостатки нормативных требований

Модификация битумаКак показывает практика, принципиальными недостатками отечественных нормативных требований (табл. 6) к полимерно-битумным вяжущим (ГОСТ Р 52 056-2003) является:

1. Среди нормируемых показателей качества ПБВ отсутствует вязкость, что не позволяет прогнозировать технологические особенности работы с ПБВ, обусловленные более высокими значениями вязкости последних по сравнению с битумами дорожными вязкими, а также эксплуатационную надежность полимерно-битумного вяжущего в составе дорожного покрытия.

2. Методика, предложенная разработчиками нормативного документа, не позволяет дать объективную оценку эластичности ПБВ (свойства, определяющего главное преимущество полимерно-битумных вяжущих по сравнению с битумами дорожными), поскольку за результат испытания принимается значение, достигаемое за неограниченный период времени («до момента изменения длины не более чем на 0,1 см за 15 минут» – п. 7.4).

Способность ПБВ к обратной деформации, реализуемая материалом за длительный период времени после снятия нагрузки, сводит к минимуму целесообразность использования такого вяжущего для устройства дорожных покрытий на дорогах с высокой интенсивностью движения.

3. Маркировка ПБВ по значению показателя «глубина проникания иглы при 25 оС» при низких регламентируемых значениях показателя «температураразмягчения» не позволяет оценить преимущества ПБВ по сравнению с битумами.

4. Адгезионная способность ПБВ, оцениваемая по отношению к мрамору или песку (эталонам), некорректна и вводит в заблуждение потребителей данного вида товарной продукции, поскольку прочность сцепления модифицированного битума с кислыми минеральными материалами, применяемыми на практике, низкая.

5. В перечень нормируемых показателей физико-механических свойств ПБВ не включен показатель «устойчивость при хранении».

Выводы и рекомендации

1. Битумы, модифицированные полимерами типа СБС, представляют собой композиционные материалы, структура и свойства которых при прочих равных условиях зависят от вида и концентрации полимера, марки битума, а также от технологии смешения компонентов.

2. Для получения модифицированных битумов с заданным комплексом свойств в каждом конкретном случае необходимо осуществлять правильный выбор полимерного модификатора, битумного сырья, выполнять комплекс лабораторных работ по оптимизации рецептуры композиционного материала.

3. Для обеспечения стабильности структуры и свойств битума, модифицированного полимером, при изготовлении разных партий товарной продукции следует использовать полимер и битум стабильного качества, а также строго соблюдать технологический регламент процессов приготовления и хранения модифицированного битума.

4. При работе с битумами, модифицированными полимерами, нельзя не учитывать особенности их структуры и свойства. Игнорирование этих знаний приведет к снижению эффективности использования полимеров в качестве модифицирующих добавок к битуму, получению некачественных полимерно-битумных материалов, а следовательно, и к неоправданным затратам вследствие применения дорогостоящих полимеров в такой материалоемкой отрасли, как дорожное строительство.

5. При выборе промышленной установки по производству полимерно-битумных вяжущих следует руководствоваться не только соображениями ценовой политики, но и техническими, технологическими возможностями установки, которые должны обеспечивать минимальное влияние на качество товарной продукции известных факторов риска.

6. Применению битумов, модифицированных полимером, должно предшествовать в каждом конкретном случае технико-экономическое обоснование, поскольку стоимость модифицированного битума намного превосходит стоимость битума.

Т.С. Худякова, к.т.н.,
заместитель генерального директора
ООО «Испытательный центр «Дорсервис»

 


Источник: https://bitumen.globecore.ru/bitumen-polimer-vyazkie/


Поделись с друзьями



Рекомендуем посмотреть ещё:



Похожие новости


Как сшить платье без выкройки если я новичок
Выкройка сов для аппликаций
Музыкальный приворот на волнах оригами книга
Проектор для росписи пряников своими руками
Бумага и фоны для скрапа
Шрифт как вышивка крестиком


Пбв полимерно битумное вяжущее это
Пбв полимерно битумное вяжущее это


Полимерно-битумное вяжущее (ПБВ) : Техпрогресс
Полимерно-битумное вяжущее. ГОСТ или не ГОСТ? Руспласт



ШОКИРУЮЩИЕ НОВОСТИ